• Matematika
  • TRIGONOMETRI Kelas 10 SMA
  • Trigonometri
  • Identitas Trigonometri

Video solusi : Bentuk lain dari sinx/(1-cos x) adalah ...

Teks video

Jika kita menemukan soal seperti ini terlebih dahulu setelah memahami yaitu konsep trigonometri Di sini ternyata untuk mencari bentuk lain dari sin X per 1 dikurang cos X dan di sini saya paparkan yaitu rumus identitas trigonometri yang kita pakai di mana itu Sin kuadrat x ditambah cos kuadrat x = 1 dimana untuk rumus ini kita ubah juga menjadi Sin kuadrat x = 1 dikurang cos kuadrat X dan cos kuadrat x = 1 dikurang Sin kuadrat X kemudian di sini kita Tuliskan kembali ya itu soalnya di sini Sin X per yaitu 1 dikurang cos X kemudian di sini langkah selanjutnya ialah kita akan melakukan itu perkalian Sekawan di mana untuk melawan perkalian Sekawan ialah pembilang dan penyebut sama sama jika itu penyebutnya namun disini tandanya positif. Oleh karena itu di sini tertulis yaitu 1 ditambah cos X dan 3 sama 1 + cos X kemudian = dimana disini Sin Xdalam kurung 1 + cos X kemudian per dalam kurung 1 dikurang cos X dikali dalam kurung 1 + cos X = disini yaitu Sin X dikali dalam kurung 1 ditambah cos X kemudian per di mana ini kita kalikan yaitu 1 dikali 11 kemudian 1 dikali positif cos x 1 cos x + cos X dan Min cos X dikali 1 ialah Min cos X * Sin a dikurang cos X kemudian di sini Min cos x * cos X min cos kuadrat X dikurang yaitu cos kuadrat X kemudian di sini sama dengan yaitu Sin X dikali dalam kurung 1 + cos kemudian pergi sini satu di mana cos X dikurang cos X itu abis makanya tertulis 1 dikurang cos kuadrat X kemudian = disini Sin XX dalam kurung 1 + cos X kemudian per disini untuk penyebutnya 1 dikurang cos kuadrat X kita Ubah menjadi Sin kuadrat X seperti yang telah saya dapatkan disini untuk rumus identitas trigonometri. Oleh karena itu di sini Sin kuadrat X dan dari sini kita bagi di mana Ini sisa 1 dan ini masih ada sisanya Sin X dan b kita ketahui hasilnya sama dengan di sini 1 ditambah cos X kemudian per Sin X dan dari sini kita ketahui jawabannya ialah yang a sehingga terasa selesaikan persoalan ini sampai jumpa di Pertanyaan selanjutnya

Sukses nggak pernah instan. Latihan topik lain, yuk!