• Matematika
  • ALJABAR Kelas 11 SMA
  • Induksi Matematika
  • Penerapan Induksi Matematika

Video solusi : Buktikan dengan menggunakan induksi matematika. 1^2+3^2+5^2+ ... +(2n-1)^2=1/3 n(2n-1)(2n+1)

Teks video

Halo friend pada soal ini kita akan menggunakan induksi matematika untuk membuktikan pernyataan yang diberikan karena di sini tidak diberikan batasan nilai m yang bisa kita pandang saja berarti di sini untuk anaknya yang lebih dari = 1 dengan n adalah bilangan asli membuktikan suatu pernyataan menggunakan induksi matematika kita akan menggunakan tiga langkah dalam pembuktian nya yang mana untuk langkah pertama kita membuktikan bahwa untuk n yang paling awalnya pernyataannya ini terbukti berarti untuk yang n lebih dari sama dengan 1 berarti awalnya adalah 1. Maka pada langkah yang pertama kita akan membuktikan pernyataannya ini benar untuk N = 1 langkah yang kedua kita akan memisahkan untuk n =Pernyataannya juga benar lalu untuk langkah yang ketiga menggunakan langkah yang kedua kita akan membuktikan untuk n = x + 1 bawah nah pertama untuk N = 1. Kalau di sini yang di ruas kiri nya berarti yang ini hanya kita ganti 1 maka kita akan per 2 dikurang satu kita peroleh 1 kuadrat yang hasilnya adalah 1 karena 1 kuadrat adalah suku yang pertamanya pada deret ini berarti katakan pada N = 1 deretnya memiliki satu suku saja hasilnya kita peroleh adalah satu untuk yang di ruas kiri dan di ruas kanan ya kita ganti dengan satu Kita kan punya 1 per 3 dikali 2 dikurang 1 x 2 + 1 yang mana Ini hasilnya adalah 1 dan Ini hasilnyamaka kita dapatkan hasilnya juga = 1 berarti karena di ruas kiri dan di ruas kanan sama-sama 1 maka bisa kita simpulkan terbukti untuk N = 1 bahwa pernyataannya ini benar untuk langkah yang kedua kita misalkan untuk n = k bahwa ini benar pernyataan kita ganti setiap yang ada disini semuanya dengan K maka kita peroleh pernyataan atau rumus yang seperti ini selanjutnya untuk yang ketiga kita akan membuktikan bahwa untuk n = x + 1 pernyataan atau rumusnya ini juga Benar berarti setiap tahunnya kita ganti dengan ditambah 1 karena yang di ruas kiri ini menunjukkan suatu deret yang mana tentunya kalau n = k maka banyak suku pada deret nya adalaharti kalau n y = x + 1 maka banyak sukunya adalah x + 1 bentuk ini kita jabarkan lagi untuk yang sebelum kuka ditambah satunya Berarti sebelumnya karena di sini x + 1 sebelumnya berarti adalah sehingga bentuk yang ada di sini juga bisa kita Tuliskan atau Gambarkan seperti ini dari langkah yang kedua karena bentuk ini kita sudah punya rumusnya yang sudah kita misalkan benar ini sama dengan bentuk yang diluaskan kita ganti dengan bentuk yang kita punya di Langkah kedua kita kita tulis seperti ini sesuai Langkah kedua dan yang di sini duanya kita kan satu persatu ke dalam kurung lalu kita perhatikan 2 x + 2 dikurang 1 berarti 2 x + 1 yang mana 2 x + 1 kuadrat jika kitaTuliskan 2 x + 1 x 2 x + 1 Nah karena di sini sama-sama punya 2 k ditambah 1 Setiap suku penjumlahannya berarti 2 ditambah satunya bisa kita keluarkan keluar kurung jadi bisa kita Tuliskan seperti ini selanjutnya karena kita punya di sini 1/3 berarti kita samakan penyebutnya yang ini kita jadikan pecahan juga yang penyebutnya adalah 3 yang mana artinya disini kita jadikan 3 dikalikan 2 x ditambah 1 per 3 berarti untuk 1 Persija yang bisa kita keluarkan keluar kurung jadi bisa kita punya bentuknya seperti ini lalu kah kita kalikan 1 per 1 dalam kurung Begitu juga dengan 3 nya 6 k kita peroleh hasilnya adalah 5 K 2 kdi 2 x + 3 * x + 1 jadi bisa kita Tuliskan seperti ini untuk sifat pada perkalian kita ketahui ada sifat komutatif yang mana urutan perkaliannya bisa kita ubah sehingga bisa kita Tuliskan juga suka yang mana 2 k ditambah 1 nya sama seperti yang di sini kita ubah saja menjadi bentuk 2 x + 2 dikurang 1 atau menjadi 2 * x + 11 lalu untuk 2 x + 3 bisa kita Tuliskan menjadi 2 x + 2 + 1 yang mana Kalau duanya kita keluarkan keluar kurung 2 dikali x + 1 + 1 sehingga kita akan punya bentuknya seperti ini yang mana kita lihat ini sama seperti bentuk yang di ruasjadi bisa kita simpulkan untuk n = x + 1 bahwa pernyataan ini juga benar jadi bisa kita simpulkan terbukti pernyataannya ini untuk n yang lebih dari = 1 dan n adalah bilangan asli menggunakan cara induksi matematika demikian untuk soal ini dan sampai jumpa di soal berikut

Sukses nggak pernah instan. Latihan topik lain, yuk!

Copyright © PT IQ EDUKASI. Hak Cipta Dilindungi.

Neco Bathing