• Matematika
  • ALJABAR Kelas 11 SMA
  • Induksi Matematika
  • Penerapan Induksi Matematika

Video solusi : Dengan induksi matematika, buktikan bahwa 1+3+5+7+...+(2n-1) = n^2 berlaku untuk setiap n bilangan asli.

Teks video

untuk melakukan pembuktian induksi matematika terdapat langkah-langkah berikut ini jika PPN merupakan pernyataan Nya maka pertama kita buktikan bahwa benar untuk N = 1 lalu kita asumsikan PN benar untuk n = k dan kita buktikan PN akan benar juga untuk n = k + 1 jika p k benar maka p k + 1 benar untuk X lebih besar sama dengan n sekarang kita lihat bahwa ini merupakan pernyataan nya untuk N = 1 kita lihat bahwa ini adalah s n dan 2 n min 1 ini adalah UN 1 akan = 1 maka kita untuk N = 1 di langkah pertama kita tinggal substitusikan satu ini ke 2 n min 1 = n kuadrat kita gantian dengan angka 1 menjadi 2 dikali 1 dikurang 1 = 1 kuadrat 2 dikurang 1 = 11 = 1, maka ini benar sekarang untuk Langkah kedua kita asumsikan bahwa PN benar untuk n = k p n nya adalah 13 + 5 + 7 + titik-titik + 2 n min 1 = N kuadrat untuk n = k kita ganti n nya menjadi 1 + 3 + 5 + 7 + titik-titik + 2 k min 1 = k kuadrat kita asumsikan bahwa ini benar maka untuk langkah ke-3 n = k + 1 sekarang kita memiliki 1 + 3 + 5 + 7 + titik-titik titik di 2 k min 1 Karena sekarang n = k + 1 maka dari itu kita akan menambahkan satu suku di belakang sehingga 2 k min 1 ini akan menjadi suku sebelumnya disini ditambah 2 kakaknya diganti jadi k + 1 dikurang 1 = disini k + 1 kuadrat lalu kita lihat dari Langkah kedua tadi kita sudah memiliki bahwa ini adalah k kuadrat sehingga dapat kita tulis di sini ka kwarda ditambah dengan 2 x + 1 dikurang 1 = X + 1 kuadrat Sekarang kita akan membuktikan bahwa ruas kiri akan sama dengan ruas kanan kita proses luas kirinya menjadi kuadrat ditambah 2 nya kita kalikan kedalam menjadi Plus Kakak + 2 min 1 = k kuadrat + 2 k + 1 lalu kita faktorkan k kuadrat + 2 k + 1 menjadi Cu + 1 dikali x + 1 = x + 1 * x + 1 adalah k + 1 kuadrat sekarang dapat kita lihat bahwa di ruas kanan pun k + 1 kuadrat maka dengan ruas kiri sama dengan ruas kanan ini sudah terbukti inilah jawabannya sampai jumpa di pembahasan soal selanjutnya

Sukses nggak pernah instan. Latihan topik lain, yuk!