• Matematika
  • ALJABAR Kelas 8 SMP
  • PERSAMAAN GARIS LURUS
  • Persamaan Garis Lurus

Video solusi : Persamaan garis yang melalui titik A(-1, 0) dan B(3, -8) adalah ....

Teks video

Haikal friend di sini kita akan mencari persamaan garis yang melalui titik a dan b. Kalau kita punya dua titik dan kita akan mencari persamaan garisnya. Anggaplah misalnya titik yang kita punya adalah x1 y1 dan x2 Y2 maka kita akan dapatkan persamaan garisnya dengan cara y Min y 1 per Y 2 min y 1 = x min x 1 per x 2 min x 1 Jadi sekarang kita punya titik a Min 1,0 dan 3,8 ini adalah titik a dan ini adalah titik B kita boleh anggap ini adalah x1 dan y1 nya dan pasangan yang kedua untuk yang baik itu adalah X2 Y2 jadi mendapatkan y Min y satunya Bakti adalah 0 per Y 2 min 1 x min 8 Min 0 = x min x satunya adalah min 1 per x 2 min x 1 x 3 min min 1 kita lihat tandanya kalau misalnya ada ketemu bentuk perkalian atau pembagian yang tandanya sama jadi bersama plus atau min sama Min jadinya positif kalauYa beda jadinya minus jadi kita lihat ini Min ketemu Min karena tandanya sama jadinya plus ini juga sama jadinya plus kita akan dapatkan disini Bakti Y kurang 0 yaitu y Min 8 Min 0 Min 8 / ini jadi x + 1 Lalu 3 + 1 jadi 4 kita boleh kali silang kita akan dapat kg dikali 4 jadi 4 y x min 8 karena kita * x + 1 kan tandanya beda Mi 8 sama X tandanya beda jadinya minus 8 x min 8 x + 1 karena tandanya juga beda jadinya minus minus 8 kali 18 lalu kemudian kita bagi dengan 4 supaya kita dapat kan y-nya minus dibagi plus jadinya - 8 / 4 jadinya 2 Lalu ada eksisnya Min 8 / 4 tanda-tandanya beda jadi - 8 / 42 kita dapatkan hasilnya adalah y = min 2 X min 2 ini adalah persamaan garisnya kalau kita lihat dalam pilihan-pilihannya adalah yang sampai jumpa di pertanyaan berikutnya

Sukses nggak pernah instan. Latihan topik lain, yuk!