• Matematika
  • KALKULUS Kelas 12 SMA
  • Limit Fungsi Trigonometri
  • Limit Fungsi Trigonometri di Tak Hingga

Video solusi : limit x mendekati tak hingga tan (3/x)/x(1-cos^2 (2/x)) sama dengan . . . .

Teks video

Halo Google pada soal ini kita akan menentukan nilai limit yang diberikan yang mana disini kita akan memanfaatkan rumus pada trigonometri yang pertama kalau misalkan kita punya Sin kuadrat Alfa maka ini = 1 dikurang cos kuadrat Alfa kemudian kalau misalkan kita punya bentuk limit t mendekati 0 dari a per Sin b t Maka hasilnya adalah a b dan begitu pula kalau kita punya limit x mendekati 0 dari Tan a t t hasilnya Nah kalau kita lihat dari bentuk 1 dikurang cos kuadrat 2 per X berarti menggunakan identitas trigonometri maka kita akan memperoleh kalau alfanya kita ganti 2 per X berarti 1 dikurang cos kuadrat 2x = Sin kuadrat 2x jadi bisa kita Tuliskan bentuk limitnya menjadi seperti ini kemudian disini kita misalkan saja tanya berarti = 1 per X mana Kalau x nya mendekati tak hingga maka kita akan punya kalau bentuk 1 per x nya berarti akan mendekati nol sehingga sehingga akan mendekati untuk yang bentuk ini bisa kita Tuliskan juga ini sama saja dengan 1 per X dikali Tan 3 per X per Sin kuadrat 2 per X sehingga 1 per X disini bisa kita ganti sebagai pe di sini untuk 3 per x sama saja dengan 3 x 1 per X berarti 3 t dan 2 per 2 dikali 1 per X yaitu 2 t dan X mendekati tak hingga yang menjadi X mendekati 0 jadi bisa kita Tuliskan seperti ini untuk perkalian dalam bentuk pecahannya bisa juga kita Tuliskan dalam bentuk seperti ini yang mana untuk bentuk limit dengan disini perkalian bisa kita cari nilai limitnya masing-masing sehingga kita bisa Tuliskan dalam bentuk limitnya seperti ini dan untuk bentuk limit ini kita gunakan yang Konsep ini maka kita pandanganya 1 dan bedanya 2 diperoleh hasil limit nya adalah 1 per 2 dikali dengan nilai limit yang disini kita gunakan Konsep ini dengan hanya 3 dan bedanya 2 maka hasil limit nya adalah 3 atau 2 tinggal kita hitung hasil perkaliannya 1 atau 2 * 3 atau 2 hasilnya adalah 3 atau 4 jadi nilai ini = 3/4 yang sesuai dengan pilihan yang D demikian untuk soal ini dan sampai jumpa di saat berikutnya

Sukses nggak pernah instan. Latihan topik lain, yuk!