Hai kovalen, pada kali ini kita akan tentukan jumlah akar-akar persamaan eksponen pada soal ini Jadi yang pertama kita akan Sederhanakan terlebih dahulu bentuk persamaannya jadi kita tulis 2 * 4 ^ x itu kan bisa kita tulis menjadi 2 per pangkat 2 per pangkat x oke nah Ini dikurang 5 dikali 2 pangkat x nah ini ditambah 2 sama dengan nol selanjutnya untuk 2 berpangkat 2 pangkat x itu bisa kita tulis menjadi 2 ^ x ^ 2 nah ini berdasarkan sifat dari eksponen yaitu jika kita punya a berpangkat m kemudian berpangkat n maka n = a pangkat n ini berpangkat m jadi pangkatnya bisa kita tukar posisinya seperti itu. Nah, kemudian ini dikurang 5 dikali 2 pangkat x ditambah 2 sama dengan nol selanjutnya untuk menyelesaikan persamaan dengan bentuk seperti ini maka konsepnya adalah misalkan kita punya a dikali a pangkat FX 2 ^ 2 + b * a ^ FX + c = 0 dengan syaratnya abc-nya itu bilangan real dananya tidak nol serta a kecilnya itu tidak sama dengan 1 maka disini solusinya itu kita misalkan persamaan eksponen yaitu a berpangkat FX dengan sesuatu nah disini kita akan asalkan a berpangkat FX dengan sesuatu Katakanlah P jadi persamaannya berubah menjadi a dikali P pangkat 2 dikali p + c = 0 Artinya kita dapat bentuk persamaan kuadrat seperti itu. Nah perhatikan persamaan akhir yang telah kita dapat Nah disini kita punya persamaan eksponen nya yaitu 2 berpangkat X nah disini kita misalkan 2 per pangkat x nya dengan sesuatu maka katakanlah P jadi persamaannya menjadi 2 P kuadrat dikurang 5 x p + 2 sama dengan nol nya perhatikan nah disini kita dapat persamaan kuadrat dengan variabel P oke nah disini tentunya memiliki akar-akar yaitu P1 dan P2 selanjutnya kita misalkan untuk P satunya itu = 2 ^ x 1 dan untuk keduanya itu = 2 ^ X2 akar-akar persamaan pada soal ini Tentunya adalah x1 dan x2 nya. Oke. Nah yang diminta adalah jumlahnya berarti sini kita diminta menentukan X1 ditambah X2 nya nah salah satu cara yang bisa kita lakukan untuk menghitung X1 ditambah X2 nya perhatikan x1 dan x2 merupakan pangkat dari 2 jadi bisa kita tulis 2 ^ x 1 + x 2 jadi kita berangkat dari sini 2 ^ 1 + 2 itu kan bisa kita pecah menjadi dua berpangkat x 1 dikali 2 pangkat x 2 nah ini merupakan sifat dari komponen yaitu jika kita punya a berpangkat m ditambah n itu = a pangkat m * a pangkat n seperti itu 2 berpangkat X1 itu tadi adalah p 1 kemudian 2 ^ X2 itu tadi adalah P2 jadi tujuan kita adalah kita cari nilai 1 dikali keduanya. Nah, perhatikan persamaan kuadrat yang telah kita dapat ingat kembali untuk perkalian akar dari hasil kali akar yaitu P1 dikali P 2 itu dirumuskan dengan C per a na dengan nilai C nya itu adalah konstanta dari persamaan kuadratnya dananya itu adalah koefisien dari P kuadrat. Nah disini kita dapat c-nya = 2 kemudian hanya itu = 2 jadi 1 dikali P 2 = C per a itu = 2 per 2 = 1 sehingga dari sini kita dapat 2 x 1 + x 2 itu = p 1 * p 2 = 1 Oke Nah selanjutnya perhatikan 2 ^ x 1 + x 2 itu = 1 tahun Second bentuk persamaan eksponen seperti ini kita jadikan yang di ruas kanan menjadi bilangan berpangkat dengan basis 2 karena disini kita akan samakan berdasarkan rumus Yang ini a pangkat FX = a pangkat n maka solusinya itu adalah FX = n dengan cara a lebih dari 0 hanya tidak boleh = 1. Oke nah, jadi dari sini bisa kita tulis dua berpangkat X1 ditambah X2 itu = 1 itu kan bisa kita tulis 2 berpangkat nol Karena untuk suatu bilangan Katakanlah a Jika dipangkatkan dengan nol itu pasti nilainya 1 dengan cara tanya itu tidak boleh seperti itu Nah selanjutnya perhatikan berdasarkan konsep yang ini maka 2 berpangkat X1 ditambah X2 = 2 ^ 0 dapat X1 + X2 nya itu = 0 Nah inilah jumlah akar-akar persamaan pada soal ini jadi jawabannya adalah bagian c. A sekian pembahasannya sampai jumpa pada Pertanyaan selanjutnya