• Matematika
  • GEOMETRI ANALITIK Kelas 11 SMA
  • Persamaan Lingkaran dan Irisan Dua Lingkaran
  • Kedudukan Titik dan Garis Pada Lingkaran

Video solusi : Diketahui dua lingkaran L1:x^2+y^2-9=0 dan L2:(x-5)^2+y^2-1=0 Tentukana. Garis kuasa yang mempunyai kuasa sama terhadap L1 dan L2 .b. Titik pada sumbu Y yang mempunyai kuasa sama terhadap lingkaran L1 dan L2 . c. Tentukan kuasa titik tersebut terhadap masing-masing lingkaran.

Teks video

Halo coffee Friends di sini kita punya dua lingkaran dan kita akan menentukan tiga poin soal ada poin a point dan point C nah Mari kita kepoin a persamaan dua lingkaran yang kita miliki kita bisa diubah bentuknya sesuai dengan bentuk umum persamaan lingkaran yaitu x kuadrat ditambah y kuadrat ditambah AX + b y + c = 0 maka lingkaran 1 sudah sesuai dan lingkaran kedua kita harus terlebih dahulu maka X kurangi 5 kuadrat kita bisa ubah menjadi x kuadrat dikurang 10 x ditambah 25 lalu + y kuadrat dikurangi 1 sama dengan nol Nah kita urutkan sesuai dengan bentuk umumnya maka akan jadi seperti ini Nah karena kita disuruh mencari garis kuasa kedua lingkaran maka kita bisa dapatkan dengan cara mengeliminasi x kuadrat dan Y kuadrat dari kedua persamaan maka akan jadi seperti ini Buatkanlah garis kuasa 10 x dikurangi 33 sama dengan nol Mari kita kepoin B di Point B karena memotong sumbu y maka X harus sama dengan nol kita substitusikan x = 0 ke dalam garis kuasa yang telah kita dapatkan di poin a maka 10 * 0 dikurangi 33 = 0 dikurangi 33 = negatif 33 maka titiknya adalah 0 koma negatif 33 selanjutnya mereka poin C nadi point C kita akan menentukan kuasa titik tersebut terhadap masing-masing lingkaran kita substitusikan titik yang telah kita dapatkan di poin B ke dalam persamaan lingkaran yang sama maka 0 kuadrat ditambah negatif 33 kuadrat dikurangi 9 sama dengan nol maka 0 + 1089 dikurangi 9 = 1080 Lingkaran 1 lalu Mari kita cari lingkaran 2 lingkaran 2 maka 0 kurangi 5 kuadrat ditambah negatif 33 kuadrat dikurangi 1 = 25 + 1089 dikurangi 1 = 1113 Cukup Sekian dari video ini. Terima kasih sampai jumpa di soal selanjutnya.

Sukses nggak pernah instan. Latihan topik lain, yuk!