di sini ada pertanyaan jumlah 5 suku pertama dari deret geometri 1/3 + 1 per 6 + 1 per 12 + 1 per 2 dan seterusnya adalah artinya di sini kita akan mencari S5 dengan rumus SN dimana pada soal diketahui suku pertama atau U1 atau dapat kita simpulkan biasanya menggunakan a yaitu 1 per 3 dan di sini sebagai suku ke-1 suku ke-2 suku ke-3 dan suku ke-4 kemudian kita akan mencari rasio atau R dengan rumus suku kedua kita bagi dengan suku pertama maka disini 1/6 kita bagi dengan 1 per 3 sehingga rasionya adalah 1 per 2 di mana satu atau dua itu kurang dari 1 Artinya kita gunakan rumus SN dengan rasio kurang dari 1 dimana rumusnya adalah SN = a dikalikan dengan 1 r dipangkatkan n dibagi dengan 1 - R kemudian kita akan mencari s 5 a = adalah 1 per 3 dikalikan dengan 1 dikurangi dengan r nya adalah 1 per 2 dipangkatkan dengan n-nya adalah 5 kemudian dibagi dengan 1 Min setengah maka 1 per 3 dikalikan dengan 11 per 2 pangkat x 5 adalah 1 per 32 dibagi dengan setengah maka 1 per 3 dikalikan dengan 1 dikurangi 1 per 32 adalah 31 per 32 kemudian kita bagi dengan 1 per 2 atau dapat Tuliskan menjadi 31 dikalikan dengan 2 dibagi dengan 3 kalikan dengan 32 sehingga S5 yaitu 31 kalikan 2 yaitu 62 dibagi dengan 96 nah disini dapat kita Sederhanakan S5 menjadi 31 per 48 sehingga jumlah 5 suku pertama dari deret geometri 1/3 + 1 per 6 + 1 per 12 + 1 per 24 dan seterusnya adalah 31 atau 48 pada option jawaban terdapat pada option yang a. Oke sampai bertemu pada pertanyaan berikutnya