diketahui balok pqrs klmn dengan panjang PQ adalah 3 cm panjang QR adalah 10 cm dan panjang LM adalah 4 cm kemudian ditanyakan besar sudut antara garis PR dengan bidang rsnm maka langkah pertama yang dilakukan adalah melihat segitiga apa yang dapat terbentuk dari garis PM dengan bidang rsmm pada gambar segitiga yang dapat terbentuk segitiga PSN di mana besar sudut yang akan dicari adalah besar sudut n atau disimbolkan dengan alfa untuk mempermudah pandangan maka keluarkan segitiga PSN siku-siku berada di SD dengan panjang PR adalah 10 cm =PR dan panjang SN adalah 4 cm = panjang RM sehingga akan dicari panjang PM terlebih dahulu dengan menggunakan teorema Pythagoras yaitu p n kuadrat = p x kuadrat + n kuadrat masukkan panjang PS dan F sehingga p n kuadrat = 10 kuadrat ditambah 4 kuadrat 10 kuadrat = 100 + 4 kuadrat = 16 maka N kuadrat = 116 hingga t = akar dari 116 = akar 4 dikali 29 akar 4 merupakan 2 sehingga PN = 2 √ 29 cm, Kemudian untuk menentukan besar sudut Alfa makadicari dengan menggunakan Sin Alfa = depan yaitu PS miring yaitu PM menjadi Sin Alfa = 10 per 2 akar 29 maka Alfa = 10 per 2 akar 29 = 68,986 sehingga dapat disimpulkan besar sudut antara garis PM dengan bidang rsmm adalah 68 koma 1986 derajat jika dibulatkan hasilnya adalah 68,20 derajat yaitu B sampai jumpa di soal Selain itu