• Matematika
  • TRIGONOMETRI Kelas 11 SMA
  • Persamaan Trigonometri
  • Persamaan Trigonometri

Video solusi : Tentukan nilai x yang memenuhi persamaan berikut jika 0<=x<=360 (cotan(2x-60)+akar(3))(secan3x-akar(2))=0

Teks video

untuk soal ini yang dicari adalah nilai x untuk persamaan yang diberikan pada soal pertama-tama kita bisa pecah persamaan ini menjadi chord 2 X dikurang 60 derajat + akar 3 = nol kemudian sekan 3 X dikurang akar 2 sama dengan nol Dian kita Sederhanakan menjadi chord 2 x min 60 derajat = min akar 3 lalu sekan 3 x = akar 2 ingat bahwa coat adalah 1 per Tan sehingga bentuknya dapat kita Ubah menjadi 1 per Tan 2 X dikurang 60 derajat = min √ 3 sehingga Tan 2 x min 60 derajat = 1 min √ 3 kemudian second second adalah 1 per cos maka 1 per cos 3x = akar 2 dengan begitu cos 3 x nilai a = 1 per akar 2 kemudian harus kita kali dengan akar sekawannya sehingga nilainya sama dengan 1 per 2 akar 2 sekarang kita gunakan sifat dari persamaan trigonometri di mana cos x = cos Alfa untuk x = 4 + k dikali 360 derajat X = min Alfa ditambah k dikali 360 derajat serta Tan X = Tan Alfa dimana x = Alfa ditambah k dikali 180 derajat pertama-tama kita kerjakan terlebih dahulu untuk Tan di sini kita punya x nya adalah 2 x min 60 derajat sekarang kita nilai Tan yang hasilnya adalah min 1 per akar 3 nilai tersebut = Tan 150 derajat sehingga kita gunakan adalah 150 derajat maka persamaannya adalah 2 X dikurang 60 derajat = 150 derajat + k dikali 180 derajat dengan demikian 2x = 150 derajat + 60 derajat + k dikali 180 derajat dengan begitu nilai x = 210 derajat + k dikali 180 derajat dikali dengan 12 Sekarang kita masukkan nilai k k adalah bilangan bulat ketika nilai k sama dengan nol kita dapatkan x nya adalah 105 derajat kemudian k = 1 x = 195 derajat = 2x = 285 derajat dan x = 3 x = 370 derajat dari sini kita hanya akan dapat mengambil 3 buah jawaban karena ada syarat nilai x berada pada 0-360 derajat jadi hanya bisa diambil 105 derajat 195 derajat dan 285 derajat selanjutnya kita pindah ke persamaan cos x = 1 per 2 akar 2 untuk 1/2 √ 2 ini nilainya = cos 45 dengan begitu cos 3x = cos 45 di sini untuk nilai x nya kita gunakan 3 x maka 3 x = 45 derajat b + k dikali 360 derajat dengan demikian X = 45 derajat ditambah k dikali 360 derajat dikali dengan 1/3 kemudian kita masukkan nilai k Dimanakah adalah bilangan bulat maka untuk x = 0 x = 15 derajat = 1 X = 135 derajat = 2x = 255 derajat kemudian k = 3 x = 375 derajat dari persamaan Kita juga hanya mendapatkan 3 buah jawaban yang pertama adalah 15 derajat 135 derajat dan 255 derajat karena 325 sudah melebihi intervalnya. Sekarang kita akan mencari dengan persamaan cos yang kedua yakni X = min Alfa ditambah k dikali 360 derajat maka 3 x = min 45 derajat + k dikali 360 derajat maka X = min 45 derajat + k dikali 360 derajat dikali dengan 1/3 ketika kita masukkan nilai k = 0 x hasilnya adalah minus 15 derajat ketika kita masukkan nilai k = 1 x = 105 derajat = 2x = 225 derajat k = 3 x = 345 derajat kemudian k = 4 nilai x = 465 derajat karena ada interval atau ada syarat maka kita hanya akan mendapatkan 3 buah jawaban juga yakni 105 derajat 225 derajat dan 345 derajat sehingga himpunan penyelesaiannya adalah sebagai berikut sampai jumpa di pertanyaan berikutnya

Sukses nggak pernah instan. Latihan topik lain, yuk!