• Matematika
  • GEOMETRI Kelas 12 SMA
  • Dimensi Tiga
  • Sudut antara Garis dengan Bidang

Video solusi : Kubus ABCD. EFGH memiliki panjang rusuk 6 cm. Jika besar sudut antara garis BF dan bidang ACF adalah theta, maka cos theta = ....

Teks video

Jika melihat soal seperti ini maka untuk menyelesaikannya kita perlu tahu bahwa apabila kita punya segitiga siku-siku seperti berikut dengan sudut Alfa nya berada di situ maka cos Alfa nya adalah a c yang juga rumus phytagoras yaitu a kuadrat + b kuadrat = C kuadrat kemudian kita perlu tahu bahwa panjang diagonal sisi dari suatu kubus adalah panjang rusuknya dikalikan dengan √ 2. Oleh karena itu di sini pertama-tama kita perlu Gambarkan kubus a terlebih dahulu kita punya kubus seperti berikut kemudian kita ingin tahu cos dari sudut yang dibentuk antara garis BF dan bidang AC sehingga pertama-tama kita perlu Gambarkan bidang acge terlebih dahulu kita punya bidang seperti berikut dan juga BF adalah garis yang ini sehingga saya bisa mengambil titik di tengah-tengah AC saya namakan S ini adalah titik O dan membentuk segitiga FB dengan segitiga tersebut siku-sikuDi sudut B perhatikan bahwa teh tanya akan berada disini sehingga untuk mencari cos Teta kita perlu tahu panjang dari OS untuk mencari panjang dari kita perlu mencari panjang dari OB perhatikan bahwa titik O berada di tengah-tengah dari bidang abcd sehingga OB panjangnya akan setengah dari BD dan karena BD merupakan diagonal sisi maka panjang BD adalah 6 √ 2 sehingga OB = setengah dikali 6 akar 2 yaitu 3 akar 2 dari sini kita akan dapat dengan pythagoras kuadrat = a kuadrat ditambah b kuadrat = 18 + 36 = 54 sehingga kita dapat = √ 54 = 3 √ 6. Oleh karena itu kita dapat mencari cos Teta nya = b f o f = 6 per 3 akar 6 Jika disederhanakan kita akan dapat hasilnya adalah3 akar 6. Oleh karena itu cos Teta nya adalah sepertiga akar 6 atau pilihan D sampai jumpa di pertanyaan berikutnya

Sukses nggak pernah instan. Latihan topik lain, yuk!