• Matematika
  • TRIGONOMETRI Kelas 11 SMA
  • Fungsi Trigonometri
  • Grafik Fungsi Sinus

Video solusi : Grafik fungsi y=sin(2x) akan turun pada interval ...

Teks video

kalau komplain di sini kita punya soal tentang turunan fungsi trigonometri grafik fungsi y = sin 2x akan turun pada interval jadi di sini supaya kita dapat mempertegas kita berikan saja di sini tanda kurung jadi 2x keseluruhan yang termasuk dalam fungsi Sina tentang turunan jadi Senin kita dapat mendeteksi Kapan suatu fungsi itu akan turun atau naiknya perlu kita ketahui bahwa fungsi f x akan turun pada interval dimana F aksen x kurang dari nol jika kita punya FX adalah Sin X maka F aksen X turunan pertama fungsi fx terhadap dirumuskan sebagai a dikali 6 cosinus X jadi perlu kita ketahui bahwa turunan dari fungsi sinar adalah porsi nasi kanse perhatikan bahwa yang di Lampung pikiran adalah a x bukan X aja jadi kita perlu kalikan dengan turunan dalamnya yaitu turunan dari a x terhadap X yang adalah A jadi Hanya kita tahu di depan sebagai pengalih dan sisanya perlu kita ketahui juga untuk kos GX ini kurang dari nol pada interval yaitu GX nya lebih dari tipe 2 ditambah x x 2 kurang dari 3 phi per 2 ditambah x x 2 phi dengan x merupakan sebarang bilangan bulat jadi dalam kasus ini kita punya untuk y = Sin dari 2 x kita dapat cari untuk kiasannya. Perhatikan bahwa berarti kita dapat gunakan formula turunan berikut ini menjadi 2 dikali dengan cosinus dari 2 x dan kita inginkan y aksen y kurang dari nol supaya kita mendapati interval turun ya Berarti untuk 2 dikalikan dengan cosinus dari 2 x kurang dari 0 phi 22 Kita bagi dua berarti untuk cos dari 2 x kurang dari nol berarti kita dapat gunakan sekarang formula yang ini kita nggak kerja 2x / GX yang berarti jadi senang kita punya intervalnya yaitu untuk 2 ini lebih dari berarti phi per 2 ditambah dengan k yang dikalikan dengan 2 phi + 2 x kurang dari 3 phi per 2 ditambah dengan 3 dikalikan dengan 2 PHI Untuk kita mendapati interval X saja Berarti semuanya kita bagi dua berarti untuk X yang ini lebih dari phi per 4 yang ditambah dengan K dikalikan dengan phi kurang dari 3 phi per 4 ditambah dengan K dikalikan dengan phi sebenarnya kita bisa mengambil untuk tanya ini bebas bisa kan min 1 min 2 dan seterusnya ataupun 12 dan b asalkan x bilangan bulat namun jika kita perhatikan untuk dioksi ini kira-kira untuk batasan Excel ini sebenarnya secara tidak langsung adalah x lebih dari nol kurang dari 2 phi. Jadi sebenarnya kita akan cari saja untuk nilai k tertentu supaya x a berada dalam interval ini supaya ada jawabannya dioksi perhatikan apabila kita ambil untuk tanya ini misalkan negatif Maka nanti kita dapati di sini batas atas menjadi 3 phi per 4 dikurang phi yang berarti kurang dari 0. Jadi sebenarnya kita tidak dapat mengambil untuk a adalah min 1 karena jika kita ambilkan alamin memang jawabannya benar kamu tidak ada pilihannya dioksi apalagi ketika kita ambil tanya adalah min dua min 3 dan seterusnya jadi misalkan Sekarang kita mulai saja dari K = 0, maka kita punya untuk XA ini lebih dari 2 per 4 ditambah dengan 0 dikali dengan phi namun kurang dari 3 phi per 4 + dengan 0 dikalikan dengan P berarti untuk XA ini lebih dari 4 namun kurang dari 3 phi per 4 atau 9 nya sama saja dengan opsi yang ini ya kita coba bisa kan katanya adalah 1 perhatikan bahwa ini kita punya untuk x nya lebih dari phi per 4 yang ditambah dengan phi namun kurang dari 3 per 4 ditambah dengan phi yang berarti untuk X lebih dari 5 phi per 4 namun kurang dari 7 phi per 4 perhatikan bahwa memang interval masih ada di antara 0 hingga 2 phi namun tidak ada pilihannya dioksi sedangkan ketika kita ambil nanti untuk tanya adalah 2 maka nanti kita dapati untuk X yang melebihi phi per 4 ditambah 2 berarti lebih 2 phi yang jelas tidak ada dioksi Jadi sebenarnya untuk A = 1 ini juga memenuhi Tapi sayangnya tidak ada di opsi yang ada di opsi adalah yang ketiga kalinya sama dengan 0 itu kita punya lebih dari 4 namun kurang dari 3 phi per 4 kita pilih opsi ya sampai jumpa di soal berikutnya

Sukses nggak pernah instan. Latihan topik lain, yuk!

Copyright © PT IQ EDUKASI. Hak Cipta Dilindungi.

Neco Bathing