• Matematika
  • ALJABAR Kelas 11 SMA
  • Polinomial
  • Teorema Sisa

Video solusi : Polinomial 6x^3+4x^2+3mx+8 dibagi oleh x+2 sisanya 6. Tentukan nilai m dan hasil baginya.

Teks video

pada soal ini kita diminta untuk menentukan nilai m dan hasil bagi oleh pembagian polinomial 6 x ^ 3 + 4 x ^ 2 + 3 m x ditambah 8 dibagi oleh x ditambah 2 kita akan menentukan dengan cara pembagian horner pertama kita tulis dulu koefisien-koefisien dari polinomial ini dapat kita lihat koefisien x ^ 3 6 x ^ 2 koefisien x 3 m koefisien x ^ 0 atau bilangan konstan nya 8 karena dibagi oleh x + 2 jadi pembaginya min 2 karena diketahui sisa dari pembagian nya 6 kita tulis 6 selanjutnya koefisien dari x ^ 3 6 kita tulis ulang lalu 6 ini kita kali dengan pembaginya min 2 diperoleh MIN 12 kita tulis di sini lalu 4 plus dengan MIN 12 diperoleh Min 8 lalu Min 8 kita kali lagi dengan min 2 diperoleh 16 Lalu 3 m ditambah dengan 16 jadi disini kita3 m + 16 selanjutnya 3 m ditambah 16 x dengan 2 diperoleh 6 m dikurang 32 nah. Nilai m dapat kita peroleh dari 8 + dengan 6 m dikurang 32 = 6 dapat kita tulis seperti ini ini sama saja dengan min 6 m dikurang 2 = 6. Jika masing-masing luas kita + 24 diperoleh min 6 m = 30 masing-masing ruas kita bagi min 6 diperoleh = Min 5 pada pembagian horner 6 ini merupakan sisa bagi dan yang ini merupakan hasil bagi di mana secara terurut dari kanan ke kiri 3 m ditambah 6 merupakan koefisien dari x pangkat 0 atau bilangan konstan nya 8 koefisien dari X dan 6 koefisien dari X ^ 2 sehingga hasil baginya dapat kita tulis 6 x kuadratkurang 8 x + 3 m + 16 karena M = minus 5 jadi ini sama saja dengan 6 x kuadrat dikurang 8 x ditambah 1 jadi kita peroleh dengan dan hasil x kuadrat dikurang 8 x + 1

Sukses nggak pernah instan. Latihan topik lain, yuk!