Oke di sini kita punya pertidaksamaan y lebih besar sama dengan x pangkat 2 ditambah 5 X dikurang 12 kita beri nama pertidaksamaan 1 dan kita punya pertidaksamaan y lebih besar sama dengan 8 x + 6 kita beri nama pertidaksamaan 2. Selanjutnya kita akan menentukan daerah X yang menjadi selesaian dari sistem pertidaksamaan dari kedua pertidaksamaan yang kita punya jadi langkah yang pertama adalah kita menentukan titik potong dari kedua pertidaksamaan tersebut yaitu ketika x pangkat 2 ditambah 5 X dikurang 12 = 8 x + 6 kita kumpulkan variabel x pangkat dua variabel x dan y dalam ruas kiri sehingga kita peroleh x ^ 2 + 5 X dikurang 8 X dikurang 12 dikurang 6 sama dengan nol kita selesaikan sehingga kitax pangkat 2 dikurang 3 X dikurang 18 sama dengan nol atau kita dapat Tuliskan sebagai sebagai X kurang 6 kali x tambah 3 sama dengan nol perhatikan bahwa pembuat nol nya adalah ketika x = 0 atau X = minus 3 langkah selanjutnya adalah kita melakukan uji titik yaitu pada titik 0,0 Nah dari persamaan 1 maksud saya dari pertidaksamaan satu kita tahu bahwa y lebih besar sama dengan x pangkat 2 ditambah 5 X dikurang 12 x = 0 dan titik y sama dengan nol maka kita peroleh hasilnya adalah 0 lebih besar sama dengan minus 12 dimana kondisi ini merupakan kondisi yang benar yakni 0 lebih besar sama dengan minus 12 selanjutnya ialah dari persamaan 2 kita tahu bahwa y lebih kecil sama dengan 8 x + 6 dengantitik x = 0 dan y = 0, maka kita peroleh kondisi 0 lebih kecil sama dengan 6 kondisi ini merupakan kondisi yang benar gimana memang benar bawah 0 lebih kecil dari 6 sehingga karena kedua pernyataan benar di mana kedua pernyataan dari pertidaksamaan Ketika melakukan uji titik 0,0 bernilai benar maka nol termuat dalam solusi sehingga daerah x nya ialah minus 3 lebih kecil sama dengan x lebih kecil sama dengan 6 terdapat pada opsi e Sekian dan sampai jumpa di Pertanyaan selanjutnya