Jika kalian menemukan soal seperti ini diketahui kubus tersebut berusuk nilainya a. Lalu Jarak titik A ke diagonal BH diagonal BH dengan garis merah saja Halo Jarak titik A ke bidang Sorry ke garis BH tersebut pertama-tama kita bisa dapat tarik garis bantuan dengan tarik Hago halo a ke b mendapatkan segitiga cepet ini ini ada ha a dan ada b a b adalah rusuk sehingga A nilai nya HB adalah diagonal dari ruang maka a akar 3 dan a adalah a akar 2 itu diagonal bidang dari sini kita mengetahui bahwa ini adalah segitiga siku-siku siku-siku Paradi lalu untuk mencari panjang titik A ke garis BH kita dapat menggambar segitiga kedua saya misalkan seperti ini segitiga yang sama tapi saya putar saja menjadi disini ada a B dan sini ha siku-siku padahal a tulis aja menjadi ini √ 2 ini ada ini √ 3 titik A ke garis BH ditarik garis seperti ini saya misalkan titik tengah ini x ke X ini adalah jarak yang kita harus cari dengan menggunakan persamaan luas segitiga sanggup ada luas segitiga yang pertama 21 adalah ini sama dengan luas 2 Luas 2 adalah yang ini yang ini rumus luas segitiga adalah 1/2 * alas * tinggi sama seperti yang di samping itu 1/2 * alas * tinggi untuk segitiga yang pertama nilai sila pertama dan ini adalah segitiga ke-2 tampil luar 1/2 kali alasnya alasnya adalah a. B. A dikali tingginya tingginya itu a akar 2 sama dengan 1 per 2 dikalikan alasnya itu a akar 3 dikali tingginya yaitu akses yang kita cari dari sini kita coret satu banyak karena sama menjadi a dikali akar 2 menjadi a kuadrat akar 2 = akar 3 x ax halo kita pindahkan akar 3 ke sebelah kiri menjadi akar 2 sorry, a pangkat 2 akar 2 per akar 3 = ax coret hanya dan kuadratnya kita coret jadi akar 2 per akar 3 kita bisa rasionalkan menjadi akar 2 per akar 3 dikali akar 3 per akar 3 menjadi AX = a akar 6 per 3 ini adalah panjang dari aksesnya atau panjang Jarak titik A ke diagonal BH tersebut sekian sampai jumpa pada pertanyaan berikutnya