• Matematika
  • ALJABAR Kelas 11 SMA
  • Program Linear
  • Nilai Maksimum dan Nilai Minimum

Video solusi : Nilai maksimum f(x,y)=4x+y dengan kendala 3x+y<=6; x+2y<=4; x>=0; y>=0; x, y, e R adalah . . . .

Teks video

Hai untuk salat seperti ini penyelesaiannya adalah kita harus menggambar terlebih dahulu grafik yang menunjukkan pertidaksamaan pada soal sebelumnya kita harus mencari koordinat pada setiap pertidaksamaan yang ada di soal caranya adalah kita akan membuat persamaan pertama saya misalkan yang 3 x ditambah y lebih kecil sama dengan 6 cara untuk menentukan koordinat titik garisnya kita akan membuat x = 0 dimana nol ini akan kita masukkan sebagai pengganti x pada pertidaksamaan yang pertama Mari kita masukkan 3 dikalikan 0 + y = 6 kalian harus diperhatikan di sini sama dengan dan yang pertidaksamaan ada lebih kecil sama dengan di sini gak ada masalah antara perbedaan persamaan dan pertidaksamaan nya karena tujuan kita di sini adalah mencari titik koordinat yaitu y = 6 kemudian kita buat lagi y = 0 kita masukkan 3x + 0 = 6 x = 2 sehingga kita dapatkan untuk pertidaksamaan yang pertama yaitu 0,6 dan 2,0 kemudian kita lakukan hal yang sama untuk pertidaksamaan yang kedua pertidaksamaan yang kedua yaitu x ditambah 2 y lebih kecil sama dengan 4 kita lakukan hal yang sama sehingga bentuknya menjadi seperti ini sehingga kita dapatkan garis pada koordinat yang ke-2 yaitu 0,2 dan 4,0 kemudian syarat yang selanjutnya kita bisa lihat disana adalah x lebih besar sama dengan 0 dan Y lebih besar sama dengan 0 artinya X bernilai positif dan Y bernilai positif juga artinya X dan Y ini merupakan kuadran 1 Kuadran 1 kita lanjutkan di halaman selanjutnya langkah selanjutnya adalah kita menggambar koordinat yang telah kita dapatkan sebelumnya gambaran menjadi seperti ini yang merah merupakan pertidaksamaan yang pertama dan yang biru adalah pertidaksamaan yang kedua kemudian langkah selanjutnya adalah kita harus menentukan daerah yang diarsir di mana caranya adalah kita akan menguji titik 0,0 di sini. sehingga hasilnya menjadi seperti ini x koma y Kita uji titik nya yaitu 0,0 langkah pertama kita masukkan ke pertidaksamaan yang pertama yaitu 3 x + y sehingga 3 dikalikan 0 ditambah Y nya 0 lebih kecil = 60 lebih kecil = 6 kita kaji ulang Apakah 0 lebih kecil sama dengan daripada 6 jawabannya adalah Iya sehingga hasil dari pertidaksamaan Garis pertama yaitu yang warna merah akan berarsir menuju ke titik uji kita yaitu 0,0 Hal itu disebabkan karena uji hasil ujinya adalah benar kemudian langkah selanjutnya adalah kita akan uji titik juga untuk pertidaksamaan yang kedua sehingga hasilnya menjadi seperti ini untuk titik uji yang kedua hasilnya adalah 0 lebih kecil sama dengan dari 4. Apakah benar jawabannya adalah benar sehingga pertidaksamaan yang kedua yang warna biru ini akan berarsir menuju ke titik 0,0 juga kemudian kita bisa lihat disini daerah yang terarsir sebanyak dua kali yaitu yang ini yang warna hitam artinya ini adalah daerah penyelesaiannya Kita masuk kedalam soal di dalam soal bertanya nilai maksimum f x koma Y = 4 x + y Artinya kita mencari titik maksimum dari daerah arsir caranya adalah kita harus mencari daerah singgungan pada daerah Asia tersebut yang pertama adalah Yang ini warna hijau saya tanyakan dengan warna hijau koordinat yang pertama yaitu 0,2 kemudian 2,0 dan titik potongnya kita tidak tahu titik potong yaitu terletak pada koordinat keberapa caranya adalah kita menggunakan metode eliminasi substitusi atau campuran untuk pertidaksamaan yang pertama dan kedua sehingga hasilnya menjadi seperti ini 3 x + y = 6 ini untuk persamaan yang pertama kita tidak memerlukan tanda lebih kecil = Karena tujuan kita adalah mencari koordinat Kemudian untuk persamaan yang kedua yaitu x ditambah 2 Y = 4 kita akan mengeliminasi salah satu variabel antara X atau Y di sini saya akan mengeliminasi variabel Y nya yang atas saya kalikan 2 yang bawa saya kalikan 1 sehingga hasilnya menjadi 3 X dikali dua yaitu 6 x ditambah y x 2 menjadi 2 y = 6 x 2 yaitu 12 kemudian yang kedua akan tetap karena * 1 Kemudian untuk mengeliminasi variabel y maka kita akan kurangi hasil dari pengurangan nya yaitu 6 x kurang X 15 x = 12 - 4 jadi 8 x = 8 per 5 kemudian langkah selanjutnya adalah kita akan men substitusi X = 85 ke dalam salah satu persamaan tersebut di sini saya akan masukkan ke persamaan yang kedua sehingga hasilnya menjadi 85 yaitu x nya ditambah 2 Y = 4 2y = 4 dikurang 8 per 5 sehingga kita dapatkan y = 6 per 5 kita lanjutkan di halaman selanjutnya kita gambar ulang gamer adalah pertidaksamaan yang pertama dan yang biru adalah pertidaksamaan yang kedua kemudian titik potongnya yaitu 0,2 dan Nanti dipotong kita dapatkan dari hari Hasil eliminasi dan substitusi adalah 8 per 5 koma 6 per 5 dan titik potong yang ini adalah 2,0 kemudian langkah selanjutnya adalah kita cari nilai maksimum ya di sini saya akan menggunakan tabel untuk mempermudah dan tablet bentuknya seperti dalam tabel ini kita bisa melihat ada beberapa informasi yang f x koma y itu menandakan titik potongnya kita misalkan 0,2 disini kita masukkan ke persamaan 4 x + y hasilnya adalah 2 kemudian mengingat soal mencari nilai maksimum kita bisa lihat nilai maksimum itu sama dengan nilai yang terbesar di sini yang terbesar adalah 8 jadi nilai maksimumnya = 8 demikian pembahasan soal ini sampai jumpa di saat berikutnya

Sukses nggak pernah instan. Latihan topik lain, yuk!